Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

3,4-Bis[(4-methoxybenzoyl)methylsulfanyl]thiophene

Süheyla Özbey,^a* F. Betül Kaynak,^a Erdal Ertas^b and Turan Ozturk^c

^aDepartment of Engineering Physics, Faculty of Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey, ^bTubitak Marmara Research Centre, FSRTI, 41470 Gebze, Kocaeli, Turkey, and ^cChemistry Department, Science Faculty, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey Correspondence e-mail: sozbey@hacettepe.edu.tr

Received 7 January 2005 Accepted 16 February 2005 Online 20 May 2005

A new type of thiophene derivative having α -thioketone groups at the 3- and 4-positions, *viz*. the title compound, $C_{22}H_{20}O_4S_3$, has been prepared and studied by NMR spectroscopy and single-crystal X-ray diffraction techniques. The molecule is nearly planar, the dihedral angles between the essentially planar thiophene and benzene rings being 9.4 (1) and 10.6 (1)°. One of the thioketone O atoms is involved in an intermolecular C-H···O hydrogen-bonding interaction.

Comment

Dithieno[3,2-*b*;2',3'-*d*]thiophenes (DTT), which consist of three fused thiophene heterocycles, are important compounds for the synthesis of a wide variety of materials for electronics and optical applications (Kim *et al.*, 2001, 1999; Osterod *et al.*, 2001; Ventelon *et al.*, 1999; Tsivgoulis & Lehn, 1995). Dimeric DTT systems, which have been employed in thin-film transistors, have been shown to have high mobilities and on/off ratios (Sirringhaus *et al.*, 1997; Morrison *et al.*, 1999; Li *et al.*, 1998). Their oxidized dioxide forms demonstrate interesting fluorescence properties and this creates important application

opportunities, such as their use as labelling agents in biological systems (Sotgiu *et al.* 2003; Barbarella, 2002; Barbarella *et al.*, 2001), photovoltaic devices (Catellani *et al.*, 2002) and lightemitting diodes (Gigli *et al.*, 2001). Conducting polymers (Fujitsuka *et al.*, 1996; Lazzaroni *et al.*, 1989; Di Marco *et al.*, 1985), and organic acceptor and donor molecules for the preparation of different cationic radical salts and chargetransfer complexes (Mazaki & Kobayashi, 1992; Yui *et al.*, 1987; Hayashi *et al.*, 1992; Bertinelli *et al.*, 1984), have been prepared.

Although some methods have been developed for the synthesis of the DTT molecules (De Jong & Janssen, 1971; Mazaki & Kobayashi, 1989; Hellberg & Remonen, 1995; Schroth *et al.*, 1997; Frey *et al.*, 2002), new synthetic methods are still required, particularly to functionalize the system. Recently, we have reported an efficient and novel method (Ertas & Ozturk, 2004). During the application of this method

Figure 1

The molecular structure of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

to the synthesis of 3,5-bis(4-methoxyphenyl)dithieno[3,2-b;-2',3'-d thiophenes, (I), an intermediate was isolated, namely the title compound, (III), which was obtained in three steps starting from 3,4-dibromothiophene, (II) (see scheme). We report here the X-ray single-crystal structure of (III), which has α -thicketone groups at the 3- and 4-positions of the thiophene ring.

The molecular structure and atom-numbering scheme of (III) are shown in Fig. 1. Selected bond lengths and angles are listed in Table 1. Overall, the molecule is fairly flat; the dihedral angles between the essentially planar thiophene and benzene rings (C5-C10 and C5'-C10') are 9.4 (1) and 10.6 (1) $^{\circ}$, respectively, while the dihedral angle between these two benzene rings is 2.4 (1)°. The thicketone moieties attached to atoms C2 and C2' of the thiophene ring adopt an extended conformation, with torsion angles close to 0 or 180° , cf. C1-C2-S2-C3 = -0.3 (2) and C1'-C2'-S2'-C3' = $-2.3 (2)^{\circ}$, C2-S2-C3-C4 = -176.4 (1) and C2'-S2'- $C3'-C4' = -179.2 (1)^{\circ}$, S2-C3-C4-O1 = 3.7 (2) and S2'-C4-O1 = 3.7 (2) $C3' - C4' - O1' = 1.4 (2)^{\circ}$, and C3 - C4 - C5 - C6 = 1.7 (3) and $C3' - C4' - C5' - C6' = -9.4 (3)^{\circ}$. The angles between the least-squares planes formed by the thioketone groups (S2/C3/ C4/O1 and S2'/C3'/C4'/O1') and the thiophene ring are 7.7 (1) and $0.7 (1)^{\circ}$, respectively. Thus, this part of the molecule is almost coplanar with the thiophene ring.

The S1-C1 and S1'-C1' bond lengths [1.709 (2)] and 1.709 (2) Å] are in good agreement with those found for other structures containing a thiophene ring (Kazak et al., 2000; Rodinovskaya et al., 2002). In the thioketone parts, the differences between the S2-C2/S2'-C2' bond lengths [1.758 (2) and 1.762 (2) Å, respectively] and the S2-C3/S2'-C3' bond lengths [1.799 (2) and 1.803 (2) Å, respectively] can be attributed to the different hybridization of the Csp^3 and Csp^2 atoms. Bonds C4–O1 and C4'–O1' are found to have normal double-bond lengths.

There are no intramolecular hydrogen bonds in (III), but the O atoms of the ketone groups are involved in short contacts, forming a five-membered ring structure (Table 2). The interatomic distances $S2 \cdots S2'$ [3.169 (1) Å], $S2 \cdots O1$ [2.783 (2) Å] and $S2' \cdots O1' [2.810 (2) \text{ Å}]$ also indicate close contacts. There is a $C-H \cdots O$ -type intermolecular hydrogen bond between neighbouring molecules along the b axis. Molecules are stacked along the *a* direction with a mean interplanar distance of $\simeq 3.45$ Å; no hydrogen bonds are observed between these layers.

Experimental

To a solution of 3,4-dibromothiophene (0.96 g, 4 mmol) in dry ether (30 ml) was added *n*-BuLi (1.6 ml, 4 mmol, 2.5 *M*) by syringe at 351 K under a nitrogen atmosphere. The solution was stirred for 5 min and elemental sulfur (0.15 g, 4 mmol) was added portionwise. The solution was then stirred for 15 min and the addition of n-BuLi and elemental sulfur was repeated in the same ratios at the same temperature (351 K). The final solution was stirred for a further 30 min, then 2-bromo-4-methoxyacetophenone (2 g, 9 mmol) was added portionwise and the solution was allowed to come to room temperature. After the addition of ice, the mixture was extracted with ether $(3 \times 20 \text{ ml})$. The organic layer was dried over MgSO₄, filtered and the solvent evaporated under reduced pressure. The crude product was purified by column chromatography, eluting with hexane-ethyl acetate (5:1), to yield the title compound (m.p. 387-388 K; yield 1 g, 58%). ¹H NMR (200 MHz, CDCl₃): δ 7.86 (4H, d, J = 8.3 Hz, Ph), 7.25 (2H, s, thiophene), 6.87 (4H, d, J = 8.3 Hz, Ph), 4.18 (4H, s, SCH₂), 3.83 (6H, s, OCH₃); ¹³C NMR (67.8 MHz, CDCl₃): δ 192.7 (C=O), 163.7 (q, C), 132 (q, C), 130.1 (CH), 128.5 (q, C), 127.2 (CH), 113.8 (CH), 55.4 (OCH₃), 40.9 (SCH₂); *m*/*z* (EI): 444 (*M*⁺).

 $R_{\rm int} = 0.026$

 $\theta_{\rm max} = 26.3^\circ$

 $h = 0 \rightarrow 13$

 $k = 0 \rightarrow 13$

 $l = -23 \rightarrow 22$

3 standard reflections

frequency: 120 min

intensity decay: 8%

Crystal data

Data collection

$C_{22}H_{20}O_4S_3$	Mo $K\alpha$ radiation
$M_r = 444.56$	Cell parameters from 25
Monoclinic, $P2_1/n$	reflections
a = 10.4682 (12) Å	$\theta = 9.7 - 18.1^{\circ}$
b = 10.9027 (12) Å	$\mu = 0.39 \text{ mm}^{-1}$
c = 18.4929 (12) Å	T = 293 (2) K
$\beta = 101.390 (7)^{\circ}$	Prism, yellow
V = 2069.1 (4) Å ³	$0.6 \times 0.6 \times 0.48 \text{ mm}$
Z = 4	
$D_x = 1.427 \text{ Mg m}^{-3}$	

Enraf-Nonius CAD-4 diffractometer Non-profiled ω scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.802, \ T_{\max} = 0.837$ 4417 measured reflections 4191 independent reflections 3279 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0507P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.036$ + 0.5012P] $wR(F^2) = 0.100$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.05 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$ 4191 reflections $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ 270 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

C1-C2	1.358 (3)	C3-S2	1.7989 (18)
C1-S1	1.707 (2)	C4′-O1′	1.212 (2)
C1′-C2′	1.353 (3)	C4′-C5′	1.482 (2)
C1′-S1	1.708 (2)	C4-O1	1.218 (2)
C2-C2′	1.439 (2)	C4-C5	1.484 (2)
C2-S2	1.7575 (19)	C8-O2	1.360 (2)
C2'-S2'	1.761 (2)	C8′-O2′	1.356 (2)
C3′-C4′	1.514 (3)	C11′-O2′	1.426 (3)
C3′-S2′	1.8024 (17)	C11-O2	1.427 (3)
C3-C4	1.506 (3)		
$C^{2}-C^{1}-S^{1}$	112 43 (14)	$0^{2}-0^{8}-0^{9}$	115 31 (17)
$C^{2} - C^{1} - S^{1}$	112.13(11) 112.59(14)	02' - 08' - 09'	115.82(16)
$C_1 = C_2 = S_2$	112.55(14) 128.65(14)	$C_{8} = 0^{2} = C_{11}^{11}$	117.97 (16)
C1' = C2' = 52'	128.83(14)	C8' - O2' - C11'	117.77 (16)
C4' - C3' - S2'	109.37(13)	$C_1 = S_1 = C_1'$	91.43 (10)
$C_{4} = C_{3} = S_{2}^{2}$	109.37(13) 109.26(13)	$C_{2'}^{2'} - S_{2'}^{2'} - C_{3'}^{2'}$	99 89 (9)
C10' - C5' - C4'	119.05(17)	$C_2 = S_2 = C_3$	99.87 (9)
C10 - C5 - C4	119.03(17) 118.32(17)	02 02 03	<i>yy</i> . <i>07</i> (<i>y</i>)
010 05 01	110.02 (17)		
S2'-C3'-C4'-O1'	1.4 (2)	C2-C2'-S2'-C3'	-179.54(14)
S2-C3-C4-O1	3.6 (2)	C4' - C3' - S2' - C2'	-179.19 (13)
O1′-C4′-C5′-C6′	169.74 (19)	C1-C2-S2-C3	-0.3(2)
01-C4-C5-C6	-178.31(19)	C2' - C2 - S2 - C3	177.04 (14)
C1' - C2' - S2' - C3'	-2.3(2)	C4-C3-S2-C2	-176.36 (13)

organic compounds

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C10−H10···O1	0.93	2.47	2.778 (2)	99
$C10' - H10' \cdots O1'$	0.93	2.53	2.811 (2)	98
$C7-H7\cdots O1^i$	0.93	2.42	3.343 (2)	173

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z - \frac{1}{2}$.

All H atoms were placed in idealized positions and refined using a riding model, with fixed C–H distances of 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (ethyl), and with $U_{iso}(H) = 1.3U_{eq}(C)$.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1231). Services for accessing these data are described at the back of the journal.

References

- Barbarella, G. (2002). Chem. Eur. J. 8, 5072-5077.
- Barbarella, G., Favaretto, L., Sotgiu, G., Antolini, L., Gigli, G., Cingolani, R. & Bongini, A. (2001). Chem. Mater. 13, 4112–4122.
- Bertinelli, F., Bizzari, P. C., Casa, C. D., Marchesini, A., Pelizzi, G., Zamboni, R. & Taliani, C. (1984). *Mol. Cryst. Liq. Cryst.* 109, 289–302.
- Catellani, M., Beselli, B., Luzzati, S. & Tripodi, C. (2002). *Thin Solid Films*, **403–404**, 66–70.
- De Jong, F. & Janssen, M. J. (1971). J. Org. Chem. 36, 1645-1648.
- Di Marco, P., Mastragostino, M. & Taliani, C. (1985). *Mol. Cryst. Liq. Cryst.* **118**, 241–244.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Ertas, E. & Ozturk, T. (2004). Tetrahedron Lett. 45, 3405-3407.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Frey, J., Bond, A. D. & Holmes, A. B. (2002). Chem. Commun. pp. 2424-2425.
- Fujitsuka, M., Sato, T., Watanabe, A., Ito, O. & Shimidzu, T. (1996). Chem. Lett. pp. 285–286.
- Gigli, G., Inganas, O., Anni, M., De Vittorio, M., Cingolani, R., Barbarella, G. & Favaretto, L. (2001). Appl. Phys. Lett. 78, 1493–1495.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Hayashi, N., Mazaki, Y. & Kabayashi, K. (1992). Chem. Lett. pp. 1689–1692.
- Hellberg, J. & Remonen, T. (1995). Synth. Met. 70, 1137-1138.
- Kazak, C., Aygün, M., Turgut, G., Odabaşoğlu, M., Özbey, S. & Büyükgüngör, O. (2000). Acta Cryst. C56, 1044–1045.
- Kim, O.-K., Fort, A., Blanchard-Desce, M. & Lehn, J.-M. (1999). J. Mater. Chem. 9, 2227–2232.
- Kim, O.-K., Woo, H. Y., Lee, K.-S., Kim, K.-S., Shim, K.-S. & Kim, C. Y. (2001). Synth. Met. 121, 1607–1608.
- Lazzaroni, R., Taliani, C., Zamboni, R., Danieli, R., Ostrota, P., Porzio, W. & Bredas, J. L. (1989). Synth. Met. 28, C515–C520.
- Li, X.-C., Sirringhous, H., Garnier, F., Holmes, A. B., Moratti, S. C., Feeder, N., Clegg, W., Teat, S. J. & Friend, R. H. (1998). J. Am. Chem. Soc. 120, 2206– 2207.
- Mazaki, Y. & Kobayashi, K. (1989). Tetrahedron Lett. 30, 3315-3318.
- Mazaki, Y. & Kobayashi, K. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 761–764.
 Morrison, J. J., Murray, M. M., Li, X. C., Holmes, A. B., Moratti, S. C., Friend, R. H. & Sirringhous, H. (1999). Synth. Met. 102, 987–988.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst, A24, 351– 359.
- Osterod, F., Peters, L., Kraft, A., Sano, T., Morrison, J. J., Feeder, N. & Holmes, A. B. (2001). J. Mater. Chem. 11, 1625–1633.
- Rodinovskaya, L. A., Shestopalov, A. M. & Chunikhin, K. S. (2002). *Tetra*hedron, 58, 4273–4282.
- Schroth, W., Hintzsche, E., Jordan, H., Jende, T., Spitzner, R. & Thondorf, I. (1997). *Tetrahedron*, 53, 7509–7528.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sirringhaus, H., Friend, R., Li, X.-C., Moratti, S. C., Holmes, A. B. & Feeder, N. (1997). Appl. Phys. Lett. 71, 3871–3873.
- Sotgiu, G., Zambianchi, M., Barbarella, G., Aruffo, F., Cipriani, F. & Ventola, A. (2003). J. Org. Chem. 68, 1512–1520.
- Spek, A. L. (2003). J. Appl Cryst. 36, 7-13.
- Tsivgoulis, G. M. & Lehn, J.-M. (1995). Angew. Chem. Int. Ed. Engl. 34, 1119– 1122.
- Ventelon, L., Moreaux, L., Mertz, J. & Blanchard-Desce, M. (1999). Chem. Commun. pp. 2055–2056.
- Yui, K., Ishida, H., Aso, Y., Otsubo, T. & Ogura, F. (1987). *Chem. Lett.* pp. 2339–2342.